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Abstract. This paper presents an algorithm for minimum cost matching on a general graph with

integral edge costs, that runs in time close to the best !inown bound for cardinality matching.

Specifically, let n, m and A' denote the number of vertices, number of edges, and largest magnitude

of a cost, respectively. The best known time bound for maximum cardinality matching is O(vfim).

The new algorithm for minimum cost matching has time bound O( /na(m, n) log n m log (nN)).

A slight modification 9f the new algorithm finds a maximum cardinality matching in the same

time as above, O(V,¢im)? Other applications of the new algorithm are given, including an efficient

implementation of Christofides' travelling salesman approximation algorithm and efficient solutions

to update problems that require the linear programming duals for matching. _
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1. Introduction.

The problem of finding a minimum cost matching on a general graph is a classical problem in

network optimization, with many practical applications and very efficient algorithms. We present

an algorithm for this problem that is almost as fast as the best known algorithm for the problem

without costs, maximum cardinality matching.

In stating resource bounds we use n and m throughout this paper to denote the number of

vertices and the number of edges in the given graph, respectively; when the graph has associated

numeric values (costs, lengths, etc.) and the values aie integral, N denotes the largest magnitude

of a value.

The best known algorithm for maximum cardinality matching is due to Micali and Vazirani

[MV] and runs in time O(,/nm) (see also [GT85]). Edmonds gave the first polynomial algorithm

for weighted matching [E65b]. Tht best known implementation of this algorithm runs in time

O(n(mlog log logdn + nlogn)), where d = max{m/n,2) is the density of the graph [GGS]. This

bound can be substantially improved under the assumption of integral costs that are not huge:

The scaling algorithm of [G85b] runs in time O(n 3/4 mlog N). We improve this last bound to

O( /n(m,n)logn mlog(nN)). We also show that for maximum cardinaLty matching our algo-

rithm runs in the same time as the above algorithm of Micali and Vazirani. We present two other

applications: We show how to speed up Christofides' travelling salesman approximation algorithm

[C] to O(n2 "-( log n)1" 5); this bound is independent of the size of the imput numbers. We also show

how to find the linear programming duals for matching, that are the basis of Edmonds' algorithm.

This gives efficient solutions of various matching update problems. Some more recent applications

of our algorithm are mentioned in the last section.

Our algorithm is based on the approach to scaling introduced by Goldberg and Tarjan for the

minimum co6t flow problem [Go, GoTS7a-b]. and applied in [GT87] to the assignment problem.

The first approaches Lo scaling computed an optimum solution at each of logN scales (e.g., [EK],

[Ga85a-b]). The new method computes an approximate optimum solution at each of log nN scales;

using logn extra scales ensures that the last approximate optimum is exact. The notioli o" (-

optimality [Ber86, Tard] turns out to be the appropriate definition of "approximate optimum" for

this scaling technique.

Applying this scaling technique to general graphs is difficult because of "blossoms". In the

scaling algorithms mentioned above for bipartite and directed graphs, the solution to one scale gives

an obvious startinv voint e' r the soltiin, to th2 next. 1l3ossoms invalidate the obvious starting
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point. The techniques of [G85b], including the notion of "shells", are used to overcome this difficulty.

Nonetheless blossoms slow our algorithm down: The algorithm of [GT87] finds a minimum cost

matching on a bipartite graph in time O(v.,/ m log (nN)). The extra factor of V/'Ig in our bound

for general matching comes from errors introduced in finding the starting point; the extra factor of

n) comes from blossom manipulation.

The paper is organized as follows. Section 1.1 reviews Edmonds' weighted matching algorithm

[E65b]; many of the ideas and routines of this algorithm are incorporated into ours. The rest of

the paper presents our algorithm in a top-down fashion. Section 2 gives the main routine, Sections

3-4 give lower level subroutines. These sections also show that algorithm is correct, and give pai ts

of the efficiency analysis. Sections 5-6 essentially complete the efficiency analysis. Sections 7-8

give the remaining lower level details of the algorithm. Section 9 concludes the analysis of the

algorithm. Section 10 applies the algorithm to other matching problems such as minimum perfect

matching. Section 11 gives surveys further applications of the algorithm.

This section closes with notation and definitions. We use several standard mathematical con-

ventions to simplify the efficiency analysis. Background concerning matching can be found in

greater detail in [L, T83].

If S is a set and e an element, S + e denotes S U {e} and S - e denotes S - {e). For integers i

and j, [i..j] = {klk is an integer, i < k < j}. The function logn denotes logarithm to the base two.

We use a hat, e.g., f, to emphasize that an object is a function. We use a dot, • , to denote

the argument of a function. For example if f is a function of two variables, f(z, • ) denotes the

function of one variable mapping y to f(x, y). If f and 9 are real-valued functions then f + g and

fg denote their sum and product, respectively, i.e., (f + g)(z) = f(X) + g(X), fg(x) = f(z) x g(z).

We use the following conventions to sum the values of a function: If f is a real-valued function

whose domain includes the set S, then f(S) = E{f(s)lj E S}. Similarly if f has two arguments

then f(S,T) = Fff(s,t)s E S,t E T), for S x T a subset of the domain of f.

For a graph G, V(G) and E(G) denote the vertex set and the edge set, respectively. The given

graph G has n vertices and m edges. All graphs in this paper are undirected. We regard an edge

as being a set of two vertices; hence a statement like e C S, for e an edge and S a set of vertices,

meas !Au._ ";crtices of e are in S. We usually denote the edge joining vertice- v and v, hy vw. Thus

if e = vw and y : E(G) - R then y(e) = y(v 4- ,'(w) by our convention for functions. We often

identify a subgraph H, such as a path or tree, with its set of vertices V(H) or edges E(H). For

example H g S is short for V(ll) g S or E(Hl) g S, depending on whether S is a set of vertices

or edges; the choice will be clear from the context.
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A matching on a graph is a set of vertex-disjoint edges Thus a vertex v is in at most one

matched edge vv'; a free vertex is in no such edge. A perfect matching has no free vertices. An

alternating path (cycle) for a r'atching is a simple path (cycle) whose edges are alternately matched

and unmatched. An augmenting path P is an alterhating path joining two distinct free vertices. To

augment the matching along P means to enlarge the matching M to M E P, thus giving a matching

with one more edge.

Suppose c : E - R is a function that assigns a numeric cost to each edge; in this paper costs

are integers in [-N.,.N] unless stated otherwise. By our convention the cost c(S) of a set of edges

S is the sum of the individual edge costs. A minimum (maximum) cost matching is a matching of

smallest (largest) possible cost. A minimum (maximum) perfect matching is a perfect matching of

smallest (largest) possible cost.

1.1. Edmonds' minimum critical matching algorithm.

It is convenient to work with a variant of the matching problem defined as follows. Let G be

a graph and v a fixed vertex. A v-matching is a perfect matching on G - v. Figure 1.1 shows an

z-matching; in all figures of this paper matched edges are drawn wavy and free vertices are drawn

square. A minimum (maximum) v-matching is a v-matching with minimum (maximum) possible

cost. G is critical if every v has a v-matching. The minimum critical matching problem is: given

a critical graph, find a minimum v-matching for each vertex v [G87]. It follows from [E65a] that

all the desired matchings can be represented the blossom tree defined below; we shall accept the

blossom tree as a solution to the critical matching problem.

Note that if G is a graph with a perfect matching, a critical graph is obtained by adding a

vertex adjacent to every vertex of V(G). Hence an algorithm for minimum critical matching can

be used to find a minimum perfect matching.

Edmonds' algorithm is based on the notion of blossom, which is explained in the next four

paragraphs. Let G be a graph with a matching. A blossom forest F is a forest that satisfies the

following properties. (Figure 1.2 shows a blossom forest, with just one tree, for the graph of Figure

1.1). The number of children of any nonleaf node of F is at least three and odd. Each node of F

is identified with a subgraph of G as follows. The leaves of F are precisely the vertices of G. If B

is a nonleaf node its children can b,- ordered as B,, i = 1,... ,k, so that V(B) = Uk=_V(B,) and

E(B) = UI(E(B.) + %), where e, is an edge that joins a vertex of V(B,) to a vertex of V(B,+1 )

(interpret ltk+ as B1 ); furthermore e, is matched precisely when i is even. (Thus each child of B is
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incident to two edges e,; for B, the edges are both unmatched, and for all other children one edge

is matched and the other unmatched; there are precisely two possible orderings of the children).

In this paper node always refers to an element of V(F) and vertex always refers to an element of

I/(G).

Each node B of F is a blossom. (Thus a blossom can also be regarded as a subgraph.) The

blossom edges of B are the above edges ei, i = 1,... ,k. Any root, i.e., maximal blossom, is a root

blossom; all other blossoms are nonrvot blossoms. Every vertex is a blossom; a blossom that is not

a vertex is a nonleaJ blossom.

The subgraph induced by V(B) is denoted G(B). Define functions

ii(B) = fV(B)I, ti(B) = IE(G(B))I.

We emphasize that a blossom is not defined as an induced subgraph, e.g., Ni(B) need not equal

IE(B)I. A simple induction shows that 6i(B) is odd. The base vertex of B is the unique vertex of

B not on a matched edge of E(G(B)). The base of a vertex v is v; a simple induction shows the

base of a nonleaf blossom B exists and is in the first child blossom B1 of B.

Any v-matching of a critical graph has a blossom forest that consists of one tree T*, called

a blossom tree. (This can be proved by examining the algorithm of [E65a].) The root of T" is a

blossom having vertex set V(G) and is denoted G'. Given T', for any vertex w a w-matching of

G can be found in time O(n). We now describe a recursive procedure to do this. The procedure

is blossom.match(Bw); here B is a nonleaf node of T*, w is a vertex of B, and the procedure

constructs a w-matching of B. To do this let B have children Bi and blossom edges e,, I <

i < k; as above, ei joins Bi to Bi+1. Let w E Bj. Match alternate edges of the list ei, i =

j,j+ 1,....,k,,2,...,j- , keeping the first and last edges e3 and ei_1 unmatched. For i $ j let

wi denote the vertex of Bi on a matched edge of this list; let wj = w. Complete the procedure

by recursively executing blossom.match(B,,wi) for each nonleaf child Bi. It is easy to see that

blossom-match(T*,w) constructs the desired w-matching in time O(n).

Now we review Edmonds' algorithm for minimum critical matching. Further details can be

found in [E65b]. Two functions y, z form (a pair of) dual functions if y : V(G) -- R, z : 2V '
) , R

and z(B) 2! 0 unless B = V(G). Such a pair determines a dual edge function yz- : E -. R which

for an edge e is defined as

i(e) = y(e)- z({B I e C BI).

(Recall that by convez.-:! f e = vw then y(e) = y(v) + y(w).) The duals are dominated on edge e
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if

they are tight if equality holds.

Edmonds' algorithm maintains a structured matching. This is a matching plus corresponding

blossom forest F plus dual functions that collectively satisfy two conditions: (i) z is nonzero only

on nonleaf blossoms of F. (ii) The duals are dominated on every edge, and tight on every edge

' at is matched or a blossom edge. It is easy to see that a structured v-matching is a minimum

v-matching. (This can be proved by an argument similar to Lemma 2.1(:) below.) Regarding (i),

define a weighted blossom as a blossom with a nonzero dual.

An optimum structured matching is a structured v-matching for some vertex v, whose blossom

forest is a blossom tree T'. Given T*, for any vertex w a minimum w-matching is found in O(n) time

by the blossom-match procedure. The output of Edmonds' algorithm is an optimum structured

matching. Thus Edmonds' algorithm solves the minimum critical matching problem.

The input to Edmonds' algorithm is a critical graph plus a structured matching. (The struc-

tured matching can be the empty matching, a blossom forest of isolated vertices, and dual functions

z = 0 and y small enough to be dominated on every edge.) The algorithm repeatedly does a "search"

followed by an "augment step" until some search halts with a v-matching (v arbitrary) and a blos-

som tree (not forest). (This is a slight difference from the way the algorithm of [E65b] halts; see

below).

More precisely a search builds a search graph S, defined as follows and illustrated in Figure

1.3. V(S) is partitioned into root blossoms B. E(S) consists of the blossom edges E(B) plus other

tight edges. The rest of the description of , depends on whether or not an augmenting path has

been found. First consider 3 before an augmenting path has been found. If each root blossom of

S is contracted to a vertex, S becomes a forest F. The roots of r are precisely the root blossoms

of G that contain a free vertex. A root blossom of S is outer if its distance (in 7) from a root of

Y is even, or inner if its distance is odd. Any descendant of an outer (inner) root blossom is also

called outer (inner). (Hence every free vertex of G is outer.) Any outer vertex v is joined to a free

vertex by an even length alternating path P(v) C E(S).

Now consider S when an augmenting path has been found. In this case S contains one or more

tight edges e joining outer vertices in distinct trees of F. Each such edge gives an augmenting path

composed of e plus the above paths P(v), P(w) for e = vw.

The search builds S using three types of steps. A grow step enlarges S by adding a tight edge
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e that was incident to S; the root blossom B at the end of e is also added to S. Grow steps always

occur in pairs in Edmonds' algorithm: first an unmatched edge e is added, along with the above

blossom B; then the matched edge incident to B is added. Figure 1.4 shows a grow step for the

unmatched edge ab followed b- grow step for the matched edge cd.

A blossom step enlarges S by adding a tight edge that joins distinca outer root blossoms of

S. This step either constructs a new blossom in S, or it discovers that S contains an augmenting

path. hi Figure 1.3 an edge ae would give a blossom step that constructs a new blossom, possibly

the one in Figure 1.1.

An ezpand step deletes an unweighted root blossom B from the blossom forest, thus making

its children into roots; B is also deleted from S and replaced by some (but not necessarily all) of

these children, so that J" remains a forest. Figure 1.5 shows an expand step; blossoms B, become

root blossoms, and B 4 and B5 leave S.

These three steps are repeated as many times as possible, giving a maximal search graph S.

If the maximal S does not contain an augmenting path and G is not a blossom, a dual adjustment

is done. It starts by computing a quantity 6, as described below. Then it makes the following

changes:

y(v) ,- y(v) + 6, for each outer vertex v,

y(v) +- y(v) - 6, for each inner vertex v;

z(B) .- z(B) + 26, for each nonleaf root outer blossom B;

z(B) - z(B) - 26, for each nonleaf root inner blossom B.

These assignments do not change the value of "-(e) for e E E(S), so these edges remain tight. The

assignments increase j'z(e) only if e joins an outer vertex to a vertex not in S, or if e joins two

distinct root outer blossoms. Thus the adjustment maintains condition (ii) above and also allows

a new grow, blossom or expand step to be executed, if 6 is chosen as 6 = min{6 ,6 b,6,} where

6 g = min{(c- y)(vw) I vw E E(G), v an outer vertex, w V(S)};

6 b = min{(c - y)(e)/2 I e an edge joining two distinct root outer blossoms);

& = min{z(B)/2 I B a nonleaf root inner blossom).

Note that 6 > 0. If 6 = 6, a grow step can be executed after the dual adjustment; similarly 6 = b

gives a blossom step and 6 = 6, gives an expand step.

After the dual adjustment the search continues to do grow, blossom and expand steps. Even-

tually the search halts, in one of two ways. Every search but the last finds a weighted augmenting
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path. This is an augmenting path P whose edges are tight. The augment step enlarges the matching

M by one edge to M P. The blossom forest and duals remain valid. Then the algorithm continues

with the next search. In the last search the matching is a v-matching. The last search eventually

absorbs the entire graph G into one blossom. At this time the algorithm halts with the desired

optimum structiared matching.

We note two final details of the dual adjustment for use below. First, the dual y(v) of any

free vertex v increases by 6. Second, note that the dual adjustment step does divisions by two to

calculate b. If all given costs are even integers then all quantities computed by the algorithm are

integers [PS, p. 267, ex. 3]. This fact motivates various details of the scaling algorithm, which

keeps edge costs even for this reason. (These details are all noted below.)

2. The matching algorithm: the scaling routine.

This section gives the overall structure of the new matching algorithm. This algorithm solves

the minimum critical matching problem in O( na(mn)logn mlog(nN)) time. This section

describes the main routine of the scaling algorithm for minim ,m critical matching. The input is a

critical graph. (This entails no loss of generality - the algorithm can detect input graphs that are

not critical, as indicated belu-;v.)

The algorithm works by scaling the costs. Each scale finds a v-matching, for some v, that has

almost minimum cost, in the following sense. A 2-optimam matching is a v-matching My, for some

vertex v, plus a blossom tree T plus dual functions y, z such that z is nonzero only on nonleaves of

T and the following constraints hold:

<_) c(e), for e E E; (la)

-"i(e) _> c(e) - 2, for e E M U U{E(B)IB E V(T)}. (lb)

Note that if this definition is satisfied for some vertex v, it is satisfied by every vertex x

(matching M. is constructed in O(n) time by the blossom-match procedure). Hence when M.

denotes a 2-optimum matching we understand that x can be chosen arbitrarily.

To motivate this definition, first observe that dropping the -2 term from (lb) gives the dom-

inated and tight conditions used in Edmonds' algorithm. The -2 term is included so that the

algorithm augments along paths of short length. This makes the algorithm efficient. Further mo-

tivation is given in [GT87]. (Actually the bipartite matching algorithm of [GT87] uses a term

of magnitude 1 rather than 2, and also maintains equality in the constraint for matched edges.
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Here we use magnitude 2 because of the aforementioned considerations of integrality. Also equality

cannot be maintained on the matched edges, because of details of blossom manipulation.) The

following result iF the analog of Edmonds' optimality condition.

Lemma 2.1. Let M, be a 2-optimum matching.

(a) For any vertex z, any z-matching X has c(X) > c(M.) - n.

(b) If each cost c(e) is a multiple of some integer k, k > n, then M, is a minimum z-matching.

Proof. (a) Consider any vertex x, and let T be the Llossom tree. Function z is nonzero only

on nonleaves of T. For any blossom B, M. contains precisely [ii(B)/2j edges of G(B), and no

matching contains more. Combining these facts with (la) - (Ib) gives

c(M.) <_ 2Ln/2j + :(Af) < 2[n/2j + y(V(G) - z) - Li/2Jz(V(T)) < c(X) + n - 1.

(Recall that by the conventions of Section 1, [ii/2Jz(V(T)) denotes f{L[(B)/2jz(B) I B a node

of V(T)}.)

(b) This follows from (a) and the fact that any matching has cost a multiple of k. I

Now we describe the scaling routin:, the main routine of the algorithm. It scal's the costs.

The algorithm always works with even edge costs to preserve integrality. The scaling routine starts

by computing a new cost function Z = (n+ 1)c (thus each Z(e) is even). It maintains a cost function

c equal to Z in the current scale. Define k = [log(n + 1)NJ + 1, the greatest number of bits in the

binary expansion of a F cost. For any s E [1..k] define a function b, : [-(n + l)N..(n + 1)N] -

{-1,0, 1) by taking b,(i) as the s01 signed bit in the expansion of i as a k-bit binary number. For

example any edge e has bk(Z(e)) = 0. The scaling routine initializes c, y and z to the zero function,

the matching M, to 0, and the blossom tree T to a root G with children V(G). Then it executes

the following loop for index s going from 1 to k - 1:

Double Step. Compute new functions c - 2(c + b.), y -2 - 1, z --- 2z.

Match Step. Call the match routine to find a 2-optimum matching M,, with new duals V, z and

new blossom tree T. I

Lemma 2.1(b) implies that if match works as described in the Match Step, the scaling routine

solves the minimum critical matching problem, i.e., each final matching M. is a minimum x-

matching. Each iteration of the loop is called a scale. We give a match routine that runs in

O(/na(m.n)logn m) time, thereby achieving the desired time bound.
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Note that in the first scale the tree T computed in the initialization, is not necessarily a blossom

tree, since it need not correspond to a blossom structure. We shall see (at the end of Section 4)

that the algorithm still works correctly, because z = 0.

3. The match routine.

This section describes the overall structure of the routine that finds a 2-optimal matching in

a scale.

On entry to match, y, z are duals computed in the Double Step, and T is the blossom tree of

the previous scale (or the initialization, in the first scale). The match routine saves T as the tree

TO; for the analysis, it is also convenient to let yo, zo refer to the duals on entry to match.

The scaling routine is similar to the main routine of the bipartite matching algorithm of [GT87].

In the bipartite algorithm, each scale is similar to the first in that the dual function can be taken to

be zero, and there is no structure on the graph inherited from previous scales. This is not true for

general graphs: The function z0 can have positive values, which cannot be eliminated (see [G85b]).

The match routine is forced to work with bloss ms from both the previous scale, in blossom tree

To, and the current scale. It is convenient to denote the current blossom forest as T (eventually

this forest becomes a blossom tree). An old blossom is a node of V(TO); a current blossom is a node

of V(T). An old blossom B dissolves either when it becomes a current blossom or, if B $ G', when

z(B) becomes zero. Note that current blossoms do not dissolve (in the current scale); hence we use

the term undissolved blossom to refer to an old blossom that has not yet dissolved. A vertex is a

current blossom, so only nonleaf blossoms are undissolved. Finally, note that the old matching is

implicitly discarded in the Double Step, so "the matching" refers to the current matching.

The match routine maintains inequalities (1), with z nonzero only on nonleaves of V(T)uV(T).

In (1b) T is the current blossom forest. Note that both current and old blossoms contribute to the

z term in the definition of j(e). When all old blossoms are dissolved, the matching is 2-optimum

and the routine can halt. The reason is that old blossom G' can dissolve only by becoming a

current blossom. When this occurs we have a v-matching, a blossom tree, and a function z that is

nonzero only on nonleaves of T.

Note that after the Double Step, (la) holds for all edges and (1b) is vacuous. Henc te Double

Step maintains (1) as desired. To help preserve (la) the match routine also maintains

_ : o. (2)

In a blossom tree, define the major child C of a node B as a child with largest size f(C); a tie
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for the major child is broken arbitrarily. Hence any nonleaf has exactly one major child, and any

rionruajor child D of B has i(D) < (B)/2. A major path is a maximal path in which each node

is followed by its major child. The major paths partition the nodes of a blossom tree. (These are

essentially the "heavy paths" of 1T79].) A major path starting at vertex R is dcnoted by P(R) and

has major path root t. Define the rank of any node B as [log (B)J. A nonmajor child of a node

B has rank less than B; a nonmajor ,.5ld of a node in P(R) has rank less than R. Li Figure 1.2

the path from the root to leaf z is the major path P(G*); the root has rank 4.

procedure match.

Traverse the major path roots R of To in postorder. At each root R call a routine path(R) to

dissolve the old blossomis on P(R), while maintaining (1)-(2). 1

This routine is correct, since after match processes root R = G', it halts with a 2-optimum

matching, as noted above. Note that for any major path root R, on entry to pat h(R) all descendants

of R have dissolved except those on P(R). Figure 3.1 illustrates the match routine: Suppose the

graph of Figure 1.1 has old blossom tree given by Figure 1.2. Then on entry to path(G ° ) all

blossoms are dissolved except those shown on P(G).

Lemma 3.1. If the time for path(R) is O(V (R)(m,n)log R(R) ii(R)) then the time for

match is O( fna(mn)log n m).

Proof. For any integer 0 < r < logn, consider the major path roots of rank r. For ar.y vertex

v E V(G), at most one of these roots R has v E V(R). Hence any edge (of E(G)) is in at most

one of the subgraphs G(R). Thus for some constirit c the time spent on these roots is at most

c V/21+a(m, n)log n m. Summing over all ranks r gives the desired bound. I

4. Shells and the path routine.

This section presents the path routine and its main subroutine shelLsearch. Thuse routines are

based on the concept of a shell [G85b).

If C and D are blossoms with V(D) C V(C), the shell G(C, D) is the subgraph induced by

V(C) - V(D). C is the outer bo. ndary, D the inner boundary. As a special case we allow D - @.

Extend the function fz to shells: fi(C, D) is the number of vertices in a shell G(C, D). A shell is
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even if Fi(C,D) is even, or equivalently, D 0 0; otherwise it is odd. Figure 3.1 indicates the even

shell G(G', A).

We use a number of functions of shells, like the above i. We define such functions by using

the sheil boundaries as arguments, as in the above i(C, D). Alternatively if X denotes a shell we

use X as the argument, e.g., i(X). On the other hand if X denotes an old blossom it corresponds

to an odd shell, and we write i(X) as a shorthand for i(X,O). Which of the two interpretations

of h(X) is appropriate will always be clear from context.

This paper only refers to shells of .P(R), which are shells G(C,D) with C,D on P(R) for

the major path root R (D may be empty). At any time in path(R), if C and D are currently

consecutive undissolved blossoms in P(R) then G(C,D) is an undissolved shell (of P(R)). (An

undissolved odd shell has C the currently innermost undissolved blossom of P(R).) The path(R)

routine works with undissolved shells. Clearly these shells change as blossoms dissolve.

The path(R) routine works in a manner similar to the bipartite matching algorithm of [GT87].

in the sense that it finds practically all the augmenting paths immediately, and then finds the re-

maining paths at a slower and slower rate. The bipartite algorithm accomplishes this automatically,

i.e., the algorithm is unchanging, only its performance changes. For general graphs, it seems that

some lower level details of the algorithm must change as the execution progresses. For this reason

we organize the path routine in "phases". More precisely the phase is defined in terms of a parame-

ter p whose value is chosen below (Section 5). Also define R' to be the largest undissolved blossom

of P(R) (clearly R' shrinks as the algorithm progresses). The path routine is a loop. Routine path

is in phase 1 during the first p iterations of the loop. After that it is in phase 2 if R' has more than

one free vertex, and phase 3 otherwise. (Hence in phase 3, R' has exactly one free vertex). It will

be apparent that path can go through any sequence of phases that starts with phase 1 and never

decreases, i.e., 1; 1,2; 1,2,3; or 1,3.

The path(R) routine augments the matching along paths of "eligible" edges; it finds these

paths by constructing a search graph of elig;ble edges. Edge e is defined to be eligible if its vertices

are in the same undissolved shell of P(R); furthermore, a condition that depends on the phase is

satisfied. In phase 1 the condition is that one of these alternatives holds:

(i) e is unmatched and Fif(e) = e(e);

(ii) e is matched and V(e) = c(e) - 2;

(iii) e is a current blossom edge.

In phase 2 or 3. the condition is F(e) E [c(e) - 2..c(e)]. Note that this is always the case if any of
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(i) - (iii) hold.

Here is the path routine. It ubs a routine shell-search(S) whose argument is a shell S. As

above, R' denotes the largest undissolved blossom in P(R).

procedure path(R).

Repeat the following steps until all old blossoms of P(R) dissolve:

Augment Step. Construct an auxiliary graph / from G(R') by contracting every current root

blossom in R' and keeping only the eligible edges of G(R'). Find a maximal set P of vertex-disjoint

augmenting paths in H. For each path of P, augment along the corresponding path in G.

Sort Step. Order the undissolved shells of P(R) that contain a free ,7rtex as S,, i = 1,...,k so

that i(S,) is nonincreasing.

Search Step. For i = 1 to k, if both boundaries of Si are still undissolved call shell..search(Si)

to adjust duals and possibly find an augmenting path of eligibl-: edges (see below), I

The path routine is implemented as follows. If R is a leaf blossom, path exits immediately (any

vertex is dissolved). Otherwise the Augment Step finds augmenting paths by doing a depth-first

search on K. The details of this search are unimportant for the analysis and so are postponed until

Section 8. It suffices to note that Section 8 does the depth-first search in time O(ii(R)).

In the Search Step, shelLsearch is the search step of Edmonds' algorithm modified in three

ways: (i) to use eligibility rather than tightness; (ii) to take old blossoms into account; (iii) to

change the halting procedure. We discuss each of these in turn.

For (i), note that eligibility plays the role of tightness in Edmonds' algorithm: shell-search

adds an edge to the search graph S only when it is eligible. However a matched edge need not be

eligible. (This occurs only in phase 1.) Thus a grow step may not be done for a matched edge

incident to S; also a blossom step may be done when a matched edge is scanned. (For example

in Figure 1.4, the matched edge cd may be added to S in a grow step that does not immediately

follow the one for ab). This contrasts with Edmonds' algorithm, where a matched edge is always

tight, a grow step is always done for a matched edge incident to S, and a blossom step is done only

when an unmatched edge is scanned. These changes to search are straightforward.

We turn to (ii). Consider an undissolved blossom B. To translate (the duals of) B by 6 means

to perform the following assignments:

y(v) - y(v) - 6, for each v E V(B);

z(B) - z(B) - 2.

12



(For example a dual adjustment in Edmonds' algorithm translates inner root blossoms.) Observe

that translating an undissolved blossom B cannot increase a quantity V"i(e), and it maintains

inequalities (1) ((1b) holds since no such edge e has exactly one vertex in B).

Consider an undissolved shell G(C, D) containing a free vertex. The routine shell..search(C, D)

executes a search step of Edmonds' algorithm on G(C,D), modified to translate C and D. More

precisely when the search step does a dual adjustment it calculates 6 = min{ 6 , 6b, e,6 d), where

the first three quantities correspond to the calcalation in Edmonds' algorithm (Section 1.1) and

d = min{z(C)/2,z(D)/2 I D 5 0}. In the dual adjustment shelLsearch translates C by 6 and

also translates D by h (if D J 0). shell-search does a dissolve siep if b = id, i.e., the txanslation

dissolves C or D (or both). The dissolve step enlarges the shell to G(C',D'), where C' is the

smallest undissolved blossom containing C and D' is the largest undissolved blossom contained in

D (Possibly C' = C or D' = D, but not both. If C' does not exist the search halts, as discussed

with (iii) below.) Any free vertex that gets added to the shell is immediately added to S as an outer

vertex. After the dissolve step the search continues, now working on the enlarged shell G(C', D').

Note that translating C ensures inequality (2) is preserved, since search increases a y-value by

at most 6. (2) in turn ensures (la) for edges going out of the blossom C. The translation of D is

needed to preserve (la) on edges vw, v E V(D), w E V(C) - V(D): translating C decreases z(C)

by 2b and y(w) may have no net change, so y(v) may need to decrease by 26. We conclude that

each step of shelLsearch preserves (1) (on all edges of G) and (2).

Finally we discuss (iii). Recall that a search of Edmonds' algorithm halts either when it finds

an augmenting path or, in the last search, when G is a blossom. These rules are also used in

shelLsearch, but they axe in fact subsumed by new halting criterion. We discuss the new halting

rules for phases 3,1 ?rd 2, in that order

In phase 3 by definition no augmenting path can be found in R. shelLsearch halts when all

blossoms on P(R) are dissolved.

In phase 1 each execution of shellsearch does at most one dual adjustment, and this adjust-

ment uses 6 = 1. (In fact Lemma 5.1 below shows that each phase 1 execution of shell-search

does precisely one dual adjustment.) After this adjustment the search stops. This contrasts with

Edmonds' algorithm, where search chooses 6 large enough so that S can change. An adjustment of

6 = I may not allow any changes (or any augments in the following Augment Step).

In phase 1 after the dual adjustment there may be unweighted current root blossoms. Specif-

ically, an inner root blossom can become unweighted in the dual adjustment. The shell-search

routine removes any unweighted root of the current blossom forest and replaces it by its children,
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until every nonieaf root is weighted.

In phase 2 shell-search(S) can halt in three different ways. It halts immediately if S is an odd

shell that does not contain all the free vertices of R'. Otherwise shell.search halts when it finds

an augmenting path of eligible edges. As a special case, shell.search(S) halts if a dissolve step

enlarges S by adding a new shell S', where S' has already been searched (in the current Search

Step) and found to contain an augmenting path.

The third way to halt is implied by the fact that only undissolved shells of P(R) are searched.

Consider the undissolved shell G(R',D) (where D is the largest undissolved blossom in R'. If

shelLsearch disso~ves R', G(R',D) is no longer contained in an undissolved shell of P(R). So

the search halts. (Note that any augmenting paths that have been created in shelLsearch will be

processed with the major path containing the parent of R; this case never occurs when R = G*.)

This concludes the statement of path. We now summarize some more facts that further motivate

and justify the phase structure.

Details of shelLsearch for the three phases are given in Section 7. For the analysis of next

section we only need the following summary. It indicates that, as already mentioned, the Search Step

consumes more time in later phases. The usual implementation of search in Edmonds' algorithm

(e.g., [GGS]) uses a priority queue to find the next dual adjustment quantity . In phase I search

can be implemented without a priority queue, since only one dual adjustment is made. The proper

data structures make the time for one Search Step O(#n(R)). In phase 2, the priority queue can be

implemented as an array. The phase 2 Search Steps use total time O(fi(R)log n) to scan the array;

in addition, each Search Step uses O(iin(R)a(m,n)) time. In phase 3 a standard priority queue is

used; the time for phase 3 is (less than) O(in(R) log n).

Next we indicate why the definition of "eligible" changes for phases 2-3. Recall that in search,

if a dual adjustment makes an inner blossom B unweighted an expand step is done. This step

removes B, a root, from the blossom forest, making its children into root blossoms. In S, B is

replaced by an alternating path of edges of E(B). This enables the portion of S descending from

B to remain in S. (See Figure 1.5).

Recall that such expand steps do not occur in phase 1, since a phase 1 search stops right after

its dual adjustment. Expand steps do occur in phases 2-3. Now observe that an edge e E E(B) that

gets placed in S in the expand step may not satisfy alternatives (i) - (iii) of eligibility. The occurs

in the following scenario: A blossom step makes e a blossom edge of B with (ii) holding. Next an

augmenting path passes through B, changing e from matched to unmatched. A subsequent search

makes B an inner blossom. Then an expand step is done for B, adding e to S (see Figure 1.5). At
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this time e is an unmatched edge in S with.-.t - c(e) - 2, -=d c is ,o longer a blossom edge.

Thus e does not satisfy any of alternatives (i) - (iii) of eligibility.

To remedy this, phases 2-3 use the weaker definition of eligibility. This makes the above edge e

eligible. The weaker definition of eligibility suffices for these phases. (However the weaker definition

would not be adequate for phase 1, see Lemma 5.1.)

This concludes the description of path. Showing path is correct amounts to checking it accom-

pishes the goal stated in the match routine: it dissolves all old blossoms on P(R) while maintaining

(1)-(2). The discussion above shows that (1)-(2) are preserved. (Note that any edge e in S has

F"(e) > c(e) - 2 and hence satisfies (1b) if it enters a blossom.) The blossoms on P(R) may all

dissolve in phase 1 or 2. Otherwise they dissolve in phase 3 because of the halting condition. When

R = G', since G is critical the entire graph eventually becomes a blossom. This dissolves the old

blossom G*, and path halts correctly.

This argument applies to the first scale, even though To need not be a blossom tree. In the first

scale path(R) is trivial except when R = G'. In this case path alternates between Augment Steps

and shell..search(G*), and works as desired. Note also that the first scale can detect noncritical

input graphs if desired: G is critical if and only if the first scale halts with a blossom G'.

5. Efficiency: high-level analysis.

This section analyzes the running time of path. It assumes one inequality. This inequality is

derived in the next section, thereby completing the analysis.

We start with the properties that limit the number of iterations in the three phases. Clearly

there is at most one phase 3 iteration. Phases 1 and 2 make progress either by adjusting the duals

or augmenting the matching. Any phase 2 iteration augments the matching. (However it need not

adjust duals, because of the different definition of eligiblity.) A phase 1 iteration may not augment

the matching, as remarked above. We now show that any phase 1 iteration adjusts the duals. This

statement is true in spite of the fact that there may exist an augmenting path of eligible edges

when shell-search is called (the path can be hidden by blossoms).

Lemma 5.1. In phase 1 any execution of 8hell.search(S) adjusts duals by 6 = 1.

Proof. Suppose for the sake of contradiction that shell.search(S) halts before doing a dual

adjustment, because it finds an augmenting path of eligible edges P. We first observe that P

corresponds to an augmenting path in the auxiliary graph H of the preceding Augment Step: Call
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the preceding Augment Step A. Clearly the edges of P were eligible in A, since the duals were not

adjusted. Now consider a root blossom B that was contracted to form H. It suffices to show if

V(P) n V(B) is nonempty then it is a subpath of P containing the base vertex of B. For this it

suffices to show that B is a blossom at the end of shellsearch (since the desired property holds for

any blossom at the end of shell-search). Before doing a dual adjustment ahelLsearch can do grow

and blossom steps, but no expand steps. Hence any blossom B that was current in A is current

when shell-search halts (although B may be included in a new, larger blossom). This gives the

desired conclusion.

The definition of the Augment Step implies that P (considered as a path in H) contains a

vertex of some path Q E P. P does not contain an edge of E(Q) n E(H), since these edges become

ineligible when Q gets augmented. (Here we use the hypothesis that the algorithm is in phase 1,

not 2.) Thus P contains a vertex in a current blossom B on Q. As noted above, this implies that P

contains the base vertex of B (after Q is augmented). Thus P contains the matched edge e incident

to B. But e became ineligible in the augment of Q. This is the desired contradiction. I

We can now do the high-level timing analysis for path(R), where R is any major path root. For

convenience let n = i(R) and m = 6z(R). Recall p is the number of iterations of the loop of path in

phase 1. At the end of phase 1 let R 1 be the largest undissolved blossom in P(R). Let F denote

the set of free vertices of R 1. The number of phase 2 iterations is at most IF1 1/2 since every phase

2 iteration augments the matching. Assume for the moment that this product inequality holds:

(p - logn)(F I - 1) _5 5nlogn.

Thus if p > 2log n then the number of phase 2 iterations is at most (5n log n)/p + 1/2.

Recall the time bounds for the various phases, as already mentioned and presented in detail

in Section 7: 0(m) for one iteration in phase 1, O(ra(m, n)) for one iteration in phase 2 plus

O(nlogn) total extra time, and O(mlogn) total time for phase 3. Thus the total time for path(R)

is O(prn + ((n log n)/p)ma(m, n) + m log n). Taking

p = max{ /na(mn)log n, 2 log n)

gives time O( /na(mn)logn m) for path(R). Then Lemma 3.1 gives the desired time bound for

the entire algorithm.

To complete the timing analysis we need only prove the above product inequality. We now

show this inequality follows from the "witness inequality". To state the latter we first introduce

16



two quantities that are fundamental in the next section. For a vertex v and an old blossom B, at

any time in path define

6(B) = the total of all transiations of B;

6(v, B) = the total of all translations of B

made when v is in an undissolved shell with outer boundary B.

Note that there can be more than one inner boundary of shells contributing to 6(B) and 6(v, B).

Since translating B by one decreases z(B) by two, 6(B) < zo(B)/2; equality holds if B dissolves

before becoming a current blossom. The quantity F(v,B) counts all translations of B "witnessed

by" v; 6(v, B) > 0 only when 't E B.

Now choose any time in path(R). Let w be a free vertex in the innermost blossom of R possible.

Let F denote the set of free vertices of P(R). The witness inequality is

(F - w, P(R)) < 5nlogn.

(This inequality is one reason why we perform the analysis in terms of 6 rather than quantities

y,z directly involved in the algorithm. Intuitively 6(v, - ) is directly related to progress made by

the algorithm, since the translations witnessed by a free vertex v correspond to searches for an

augmenting path involving v. On the other hand y(v) can change even though no progress is being

made for v - specifically in executions shell.search(A, B) where v E B (see Section 4, modification

(ii) of shell.search).)

To derive the product inequality, consider any vertex v E F1 . In the Sort Step of any iteration

of path, let S(v) denote the undissolved shell of P(R) that contains v. We show that the Search

Step executes .hell.earch(S(v)) in all but at most log n iterations of path. The Search Step does

not execute shell.search(S(v)) if a boundary of S(v) dissolves before S(v) is examined. In this

case the ordering of the Sort Step implies that the quantity R(S(v)) doubles. Since this can happen

only log n times the desired conclusion follows.

Every phase I execution of shell search(S(v)) adjusts duals by 6 = I (Lemma 5.1). Thus in

p iterations of phase 1, v witnesses at least p - logn translations, i.e., 6(v,P(R)) 2! p - logn,

and 6(F- w,P(R)) 2! (p- log n)(JF1 - 1). This plus the witness inequality obviously implies the

product inequality.
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6. The witness inequality.

This section derives the witness inequality, thereby completing the efficiency analysis for path.

It also derives a related inequality needed for shell-search.

We start with terminology. We use an interval notation for paths in trees: If node C is an

ancestor of D, 1C, D] denotes the path from C to D with both endpoints included; [C, D) is the

same path with D excluded, etc. For an odd shell G(C,D) of P(R), any interval ending with D,

e.g., [C,D], is interpreted as if D were the last node of P(R). Recall that G* is the root of TO, so

[G', C] is the path from the root to C.

If B is a node of a tree, N(B) denotes the set of its nonmajor children and D(B) denotes the

set of its descendants (including B). These functions can also be applied to sets of nodes, e.g., if

P is a path in a tree, DK!(P) denotes the set of all descendants of nonmajor children of nodes of

P. If P is an interval omit the enclosing parentheses in these notations, so A.[C, D] and Ar[C, D)

have the obvious meanings,

The derivation concentrates on three types of shells G(C, D). In each type G(C, D) is a shell of

P(R). G(C, D) is original if C is the parent of D (an odd shell C is original if C is the last nonleaf

in P(R)). G(C, D) is active if it is even and C and D both dissolve after each blossom in (C, D).

For example an even original shell is active. Also if the Search Step executes shel..search(C, D)

where D # 0, then G(C, D) is active. The converse is false (an active shell may dissolve before

shell..search is executed on it).

To define the third type, say that edge e crosses a set of vertices B if one end is in B, i.e.,

le fl B I = 1. (In this notation B is usually a blossom.) The crossing function -Y : 2 V(G) . Z of

a matching M is defined by -y(B) = l{ele E M crosses B}I. For example if B is a blossom of the

matching, 7(B) _ 1. The third type of shell G(C, D) is uncrossed if the current matching does not

cross C or D, i.e., y(C) = -t(D) = 0. (For an odd shell this amounts to 'y(C) = 0.) An undissolved

shell is certainly uncrossed, but the converse is false.

The first step in the derivation is to summarize the changes in duals y, z caused by scal-

ing and shell.searches. This leads to an inequality that is similar to the witness inequality but

unfortunately has some extra terms.

Fix a time in the execution of path(R). Let M be the current matching. Let -y be the crossing

function for M. Choose a free vertex w in the innermost blossom of P(R) possible. Let Mo be the

w-matching on R given by the 2-optimum matching of the previous scale. Let 7o be the crossing

function for M0 . Thus an old blossom B has -1 0(B) = (if w E B then 0 else 1). (In the first scale

R = G, w can be any vertex and Mo any w-matching.)
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Let G(C, D) be an uncrossed shell of P(R) (C or D may be currently dissolved or undissolved).

Let F, be the set of free vertices of G(C, D) - w. (Possibly F, is empty.) Recall that the set of

old blossoms is V(To) and the set of current blossoms is V(T). In the following lemma all time-

dependent quantities (7, 6, F) are evaluated at the chosen time in the execution of path(R). (The

lemma does not hold after the execution of path(R), as indicated in the proof.)

Lemma 6.1. At any time in path(R) an uncrossed shell G(C,D) of P(R) satisfies

(y - "yo)3( (C,D) U VAf[C,D) ) + e(F,, V(To)) _ 51i(C,D).

Proof. We start with some terminology. We frequently use our convention of identifying a sub-

graph with its vertices or edges, e.g., we use M n G(C, D) to abbreviate M n E(G(C,D)). Define

MI = M n G(C, D),

M = Mo n G(C, D),

d = c(M) - c(M'),

(B) = IM n G(B) - IM' n G(B)I.

In the last definition B is a blossom, old or current. We say that an old blossom "intersects" a

shell if they have a vertex (or edge) in common. Thus the old blossoms that intersect G(C, D) are

those in 1G", D) U VA/[C, D). The argument is based on estimating d in two ways.

Observe that neither M nor M0 crosses C or D. For M this holds by hypothesis. Since M

does not cross C and fi(C) is odd, w E C. Hence M0 does not cross C. Similarly for D, if it is

nonempty.

First estimate d using the initial duals yo,zo. Conditions (1) of the previous scale and the

Double Step of the scaling routine imply

) c(e), for e E M;

0zo (e) 2_ c(e) - 8, for e E Mo.

(This holds for the first scale s = 1, since y"O(e) = -2 and Ic(e)l _< 2.) Adding the M inequalities

and subtracting the Mo inequalities for the edges of M' U MD gives

-yo,(F.) + pzo(V(To)) :5 -d + 81M0I.

This inequality depends on the fact that neither matching crosses C or D.
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Next estimate d using the current duals y,z. Since (i) holds for the current duals, adding (1a)

for M' and subtracting (Ib) for M' gives

y(F,,) - M z(V(To) U V(T)) :_ d + 21M'I.

Again this depends on the fact that neither matching crosses C or D.

Next we bound the terms involving V(T) and V(To) in the two d estimates. A current blossom

B E V(T) has u(B) < 0. This follows since IM' n G(B)I is as large as possible; this in turn follows

since M induces a u-matching on B for some u E B, and no edge of M crosses C or D. (Note

however that an edge of B can cross C or D.) Since p is nonpositive on V(T), the V(T) term in

the second d estimate can be dropped.

We turn to the V(To) terms. First note that an argument similar to the above shows that pU

is nonnegative on old blossoms. This fact will be used below.

Clearly p vanishes on blossoms not intersecting G(C,D), so we can restrict attention to old

blossoms B intersecting G(C,D). Define

f (B) -F, n V(B)I;

in addition define -' and yo as the crossing functions of M' and Md, respectively. We show the

following inequality to bound the V(To) terms:

p(Zo - z)(B) 2 (f + 7' - ')F(B).

First we prove the equation 2pu(B) = (f + y' - y')(B): Let v be the number of vertices in V(B) n

G(C,D). By definition 2p(B) = (v - 21M'A nG(B)I) - (v - 2IMO n G(B)I). The right-hand side is

how many more vertices of V(B) fl G(C, D) M does not match on edges of G(B) n G(C, D) than

M0 . A vertex of V(B) n G(C,D) is not matched on an edge of G(B) n G(C,D) if it is free or

it is matched on an edge crossing V(B) n G(C,D). Vertices of the first type contribute f(B) to

the right-hand side (note that w is free in both matchings). Vertices of the second type contribute

(-y'- ' )(B), since no edge of either matching crosses D. This gives the desired equation.

It is easy to see that to prove the inequality for the V(T) terms, it suffices to show that an old

blossom B has (zo - z)(B) ! 2h(B) or ji(B) = 0 (here we use the nonnegativity of y(B)). If B has

never become a current blossom then (z0 - z)(B) = 26(B). If B is a current blossom then p(B) = 0.

If B dissolved by becoming a blossom but is not a current blossom then (zo-z)(B) = zo(B) 2! 2(B).

The inequality for V(To) terms follows.
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Next we deduce

(y- yo)(F ,) + (f + -l'- -l')3[, D) U DV[C, D) )<5R (C, D).

This follows by adding the two d estimates and replacing the pt(zo - z) terms using the above

observations. In addition note that IM'I < IM I 5 ii(C, D)/2; also, 6 vanishes on [G', R), since we

have chosen a time during the execution of path(R).

A free vertex v has y(v) = yo(v) - (F - F(v, • ))[G*, v). (To show this consider any execution

shell-search(A,B). A dual adjustment of 6 does not change y(v) if v V A or v E G(A,B); it

decreases y(v) by 2b if v E B (which implies v E A).) Summing these equations for all v E F1.

implies

(y - yo)(F,,) + f3( JR,D) U VArIC,D) ) - "(F,,V(To)) = 0.

The last step is to subtract the last equation from the preceding inequality. This gives the

lemma, if we use two observations: The terms ((y'- 7-')3([R,C]) vanish, since a blossom B E [R, C]

has V(B) n V(C) = V(C) and -y'(C) = %'(C) = 0. The remaining blossoms B are contained in

G(C,D). Hence the function t' - 7yo simplifies to - - yo. I

The rest of the analysis involves two quantities A,c. Before lefining them we give some

motivation, and in the process we survey the rest of the derivation. Observe that every scale starts

off with an "error" of 0(n), in the sense that the 2-optimum matching of the previous scale can

cost 0(n) more than that of the current scale. In bipartite matching this is the only source of error

[GT87]. In general matching there is a second type of error when path(R) begins. It comes from

changes in the duals made by calls path(C), for children C of P(R). Specifically in the inequality

of Lemma 6.1, the right-hand side corresponds to the error caused by scaling. If the first term

on the left-hand side is nonnegative, Lemma 6.1 is essentially the desired witness inequality (it is

even stronger). However an uncrossed blossom B0 E VDI[C,D) that does not contain w makes

a negative contribution to the first term on the left. This is the second type of error, coming

from dual adjustments in previous calls to path. (It is tempting to conjecture that the negative

contribution of B 0 is offset by terms 6(v, BO) in the second term. In general this is false: An

execution shell.search(Bo, Co) can contribute to the first term because it translates B 0, but not

contribute to the second term because G(Bo,Co) does not contain any vertex that is currently free.)

The quantity c(C) measures the amount of error introduced by path(C) (including calls for

all descendants of C). Lemma 6.4 below shows that processing a major path P(R) adds O(i(R))
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to the error, i.e., the total error introduced by path(R) (including calls for its descendants) is

O(i(R)logR(R)). The desired witness inequality follows quickly from this bound.

To bound E we use the quantity A, which measures total dual adjustment. Lemma 6.3 below

shows that E is bounded by a sum involving A terms. Lemma 6.2 below shows that A is itself

bounded by a sum involving A terms. These two results plus the above Lemma 6.1 combine to

give the desired Lemma 6.4.

Here are the formal definitions. For a shell G(C, D) of P(R),

A(C,D) = the total of all translations in searches of shells G(A,B) for A,B E [C, D].

Equivalently A(C,D) is twice the total of all dual adjustments made in searches of even shells

G(A,B) (A,B E [C,D]), plus if D = 0 the dual adjustments of odd shells G(A) (A E [CD]). For

a major path root R the odd shell R has A(R) = F(P(R)). A is evaluated after the last translation

of a shell in G(C,D). (Note that A(C,D) differs slightly from "the total of all translations in

executions shell search(A,B) for A,B E [C,D]. If an execution shell.search(C,D) dissolves

C or D and proceeds to adjust duals by some positive amount, A(C, D) does not have a term

corresponding to this dual adjustment whereas the alternative definition does.)

Unlike A, c is a time-varying quantity. To define it fix a time in the algorithm, and let -, be

the crossing function and F the set of free vertices, both defined for the current matching. For an

old blossom C the quantity

(r6+6(F, *))(C)

represents the total amount of translations of C that have been "witnessed" by either a currently

free vertex or a currently matched edge crossing C (an edge crossing C "witnesses" every translation

of C, unlike a free vertex). For an old blossom B, c(B) is the total of all "unwitnessed" translations

of blossoms contained in B, more precisely,

e(B) = ((1 - )F- (F, • ))(D(B)).

This quantity changes because (i) " increases as more translations of blossoms are done; (ii) F gets

smaller as more vertices are matched; (iii) 7 changes as the matching changes. To see how this

definition fits into the above motivation, first observe that Lemma 6.1 can be rewritten as follows.
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Corollary 6.1. At any time in path(R) an uncrossed shell G(C, D) of P(R) satisfies

(-- yo)3( (C, )) ) + F(F,, P(R)) <_ 5f(C, D) + c( K[C, D)

where all quantities (including ) are evaluated at the chosen time in path(R).

Proof. This follows by rearranging the inequality of the lemma. Note that in that inequality,

"V(To)" is equivalent to P(R) U VA[C, D). To get the ( terms on the right-hand side use two facts

about old blossoms B: Ifw V B then 70 (B) = 1. If w E B then "yo(B) = 0 and (6-b(w, ))(B) 0.

I

The corollary indicates that a bound on ((B) for B E AI[C,D) can be used to bound the total

dual adjustment, and complete the analysis (we shall see that the first term on the left-hand side

is nonnegative). It is important to note, though, that the bound on (B) must hold even after the

call to peth(B) (thus see the statement of Lemma 6.4). In evaluating ((B) after path(B). in the

definition of (B) the " functions count the total of all translations ever made, and "free" and "

refer to the current matching.

Now we start our program of bounding first A, then E. We often use an interval [A. B) in the

blossom tree to refer to the shell G(A, B). The interval is active, uncrossed, etc. if the corresponding

shell has that property.

The argument works by partitioning various intervals (shells) into subintervals (subshells).

Observe that the active intervals are nested: If [A,B) is active and C E (A,B) then any active

interval having C as a boundary is contained in (A,B) (i.e., its other boundary is in (A,BJ). Thus

any even shell [A, B) of P(R) can be partitioned into active shells [A,, Aj+). Specifically A, = A,

and A,+, is defined to that [A,, A,+,) is the largest possible active shell contained in [A, B) with

outer boundary A,. (A,+, exists since any even original shell is active.) We use this partition in

Lemmas 6.2-6.3.

Now we estimate A for an active shell G(C, D) of P(R). Throughout the following lemma and

proof, "shell" refers to a shell of P(R). The calculations rely on the fact that any shell (of P(R))

contained in G(C,D) is even. Out of all dual adjustments made for shells contained in G(CD)

consider the last one. (This adjustment can be for shell G(C, D) or a smaller shell; in the latter

case, a subsequent dual adjustment is made for a shell with outer boundary D (or inner boundary

C) that dissolves D (C).) Let M be the matching at the time of this last dual adjustment and let

-y be the crossing function of M.
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Lemma 6.2. An active interval jC,D) of P(R) can be partitioned into an uncrossed interval

IT, U) and a set of active intervals A such that for F the set of free vertices of M in IT, U),

A (C, D) <5-t([T, U)) + '(F, [C, U)) + A(A).

Proof. To define the partition, choose any free vertex v in [C,D) and It,- IT, U) be the minimal

uncrossed shell contairdng v. (Thus T is the innermost blossom of PIR) containing v with 7y(T) = 0

and U is the outermost blossom of P(R) not containing v with y(U) = 0.) Clearly [T, U) _ [C, D),

since -y(C) - y(D) = 0. Let A consist of the above partitioi of each of the even shells [C, T), [U, D)

into active interval. (One or both of these even shells may be empty.)

To verify the inequality of the lemma, consider aiy shell G(A, B) _ G(C, D) that gets searched.

Let A0 denote the total of all translations made in all searches of shell G(A, B). We show tht AO

is counted by the terms on the right-hand side of the inequality. "Counted" means that the terms

contain a contribution of A0 uniquely associated with the translations for G(A, B).

This is obvious if [A, B) is included in one of the active intervals of A. There are two other

cases: (i) A E (T, U); (ii) A is the boundary of a shell of A and B is a proper subset of T. This

follows from the nesting property of active intervals.

First consider case (i). If B E (T, U) then A0 is counted by -y'({A, B}), since -I(A), (B) 2! 1.

Suppose B (T, U). Thus [A, U) C [A, B). Since [A, U) is even and U is uncrossed, e,,her Jy(A) 2! 2

or 7(A) = I and G(A, U) contains a vertex of F. In either case A 0 is counted by (y3+ 6(F, • ))(A).

Next consider case (ii). If B C U then [T, U) _ [A, B). Since G(T, U) has at least two free

vertices, A 0 is counted by (F,A). The other possibility is B E (T,U). Thus [T,B) 9 [A,B). As

above, either 'y(B) _> 2 or 7f(B) = 1 and G(T,B) contains a vertex of F. Thus A 0 is counted by

-6(B) + (F,A). I

Corollary 6.2. For an active shell G(C,D) of P(R),

A(C, D) <:5i(C, D) + c( NV[C, D) ),

where each quantity (B),B E ,V[C,D), is evaluated at a time in path(R) (the times in path(R)

may differ).

Proof. The proof is b) induction on jl(C,D). Corollary 6.1 implies that the uncrossed interval

[T,U) of the lemma has y/( [T,U) ) + 3(F, [C, U)) 5 5i(T, U) + ( .N[T,U) ), where all quaitities

(including t) are evaluated after the last dual adjustment of a shell in G(C,D). (Note that since
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[C,D) is active and even, w E D at this time, whence -y vanishes on [T,U). Also since T is

uncrossed, the argument to -y is correct. Finally since [C, D) is active, the second argument to 6

is correct.) Substituting in the lemma and applying the inductive hypothesis to each interval of A

gives

A(C, D) < 5i(T, U) + (( K[T, U)) + 5R(A) + c(Ar(A))

This implies the corollary. I

Now we estimate A(R) for a major path root R. Throughout the following lemma and proof,

"shell" refers to a shell of P(R). Let M be a matching with free vertices F. Let -Y be the crossing

function of M. We allow M to cross R, i.e., possibly 7 (R) > 0; this can occur in executions of

path(R') for R' an ancestor of R. (Because of this the estimate is done slightly different than

Lemma 6.2. To see why first note that Lemma 6.2 gets used in the form of Corollary 6.2; the latter

depends on Corollary 6.1, which in turn depends on Lemma 6.1; but Lemma 6.1 is valid only during

the execution of path(R).)

Lemma 6.3. For some (possibly empty) blossom D in P(R), interval [R,D) can be partitioned

into the original shells (intervals) of P(R) containing a vertex of F, plus a set of active intervals

A, such that for 6 evaluated at the end of path(R),

A (R) < + (F, ))(P(R)) + A(A).

Proof. The argument has the same form as Lemma 6.2. Let [C,D) be the innermost original

shell of P(R) that contains a vertex of F (possibly C is the innermost nonleaf blossom of P(R) and

D = 0). The portion of [R,D) Oha.L e.cludeb the original shells containing a vertex of F consists

of a number of even shells. Let A consist of the above partition of each of these even shells into

active intervals.

To verify the inequality of the lemma consider any shell G(A,B) of P(R) that gets searched.

Let AO denote the total of all translations made in all searches of shell G(A, B) (if B = 0, A0

denotes the total translation of A). As in Lemma 6.2 we show that A0 is counted by the terms on

the right-hand side of the inequality.

This is obvious if [A, B) is included in one of the active intervals of A. There are two other

cases: (i) A C D; (ii) A is the boundary of a shell of A and B C_ U, where [T, U) is the outermost

original shell containing a vertex of F and contained in A. This follows from the nesting property

of active intervals.
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First consider case (i). Clearly D is nonempty in this case, so it has an odd number of vertices

but no free vertex of M. Hence the same applies to any blossom X C D, whence 7 (X) > 1. Thus

A0 is counted by 76(A) if B = 0 and 7y6({A,B}) if B 6 0.

Next consider case (ii), where we have [T,U) C [A,B). Since G(T,U) has a free vertex, if

B = 0 then A0 is counted by 3(F,A).

Suppose B 6 0. Since [A,B) is even and contains a vertex of F, either 7({A,B}) > 1

or -y(A) = 7(B) = 0 and [A,B) contains two vertices of F. In either case A0 is counted by

'yb({A,B})+b(F,A). |

Lemma 6.4. For a major path root R at any time, even after path(R), c(R) < 5n(R)[logn(R)J.

Proof. Let the rank of R be r = [log (R)J. The argument is by induction on r. The base case

is r = 0, i.e., R is a leaf blossom. Such a blossom is never translated, so c(R) = 0 and the desired

inequality holds.

For the inductive step let R have rank r > 0; assume the lemma for roots of rank less than r

and prove it for R as follows. For the current matching M, let F be the set of free vertices and

let -y be the crossing function. M need not be contained in R, i.e., possibly -7(R) > 0. Using the

definition of E(R) and then the partition set A of Lemma 6.3 gives

,(R) = ((A(( • )) + (1 - )b - b(F, • ))(P(R)) _ c(A(P(R))) + A(A).

Now we bo'ind the two terms on the rightmost side.

For the c term, consider any B E A(P(R)). The inductive hypothesis shows that C(B) <S

5(r - I)i(B). Furthermore an old blossom B with V(B) nl F = 0 has 7Y(B) >_ 1; this implies that

such a blossom has ((B) < 0. Thus the first term is bounded by

£(A(P(R))) .. 5(r - 1)n({B I B E N(P(R)),V(B) n F $ 0}).

For the A term, use Corollary 6.2 and then the inductive hypothesis for each nonmajor child

of an interval of A, to get

A(A) _ 5;i(A) + (Ar(A)) <_ 5ii(A) + 5(r - 1)i((A)) _< 5r(A).

Using the bounds for the two terms gives the desired ;requality,

c(R) 5 5(r - 1)i({B I B E A(P(R)),V(B) nl F # 0)) + 5ri(A) < 5rR(R).
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Here we have used the fact that no shell of A contains a vertex of F. t

Let R be a major path root. At any time in path(R) let F be the set of free vertices of R, and

let w be a free vertex in the innermost blossom of R possible. The choice of time in path(R) implies

that -'(R) = 0 and w exists. Hence any vertex v E F - w is in a minimal uncrossed shell G(A, B)

of P(R) (A is the innermost blossom of P(R) containing v with 7(A) = 0; B is the outermost

blossom of P(R) not containing v with -y(B) = 0, or if such does not exist B = 0). Let U be

the set of intervals [A, B) for all such shells. Apply Corollary 6.1 to each shell of U. Note that a

blossom B E P(R) has y(B) > -yo(B) (since yo(B) = (ifw E B then 0 else 1), and w € B implies

7(B) > 0). Thus
b(F- , P(R2)) <55iR <(() 5 5i(2) log i()

where the last inequality follows from Lemma 6.4 and the fact that the intervals of U are disjoint.

This is the desired witness inequality.

Next we derive an inequality used to implement the priority queue in shelLsearch (see Section

7).

Corollary 6.3. For a major path root R, the total dual adjustment in all phase 2 shellsearches

of path(R) is at most 5;!(R)log R(R).

Proof. Write the total dual adjustment in phase 2 as d, + d2, where d, is the total adjustment

when there are free vertices in R' that are not in the (undissolved) odd shell, and d2 is the remainder.

i.e., adjustment when all free vertices in R' are in the odd shell. We show that each d, is at most

(5/2)(i(R) log R(R).

The dual adjustments counted in d, all occur in shell-search of an even shell. Corollary 6.2

and Lemma 6.4 show that for an active shell G(C, D) of P(R), A(C, D) < 5R(C, D) [ log R(C, D)J.

Summing these inequalities for all maximal active shells of P(R) and using the definition of A

implies that d, < (5/2);(R)logR(R).

For d2 , consider the uncrossed shell G(R,0) immediately after the last dual adjustment counted

in d2. The definition of phase 2 implies that at this time the odd shell has at least three free vertices

v. Each such vertex has witnessed every dual adjustment of an odd shell, i.e., 4(v, P(R)) > d2 .

Thus the witness inequality implies d2 5 (5/2);(R)logai(R). I

In the proof the bound used for d, actually bounds the total dual adjustment in all

sheiLsearches of even shells (in phases I or 2). Hence this total is at most (5/2)R(R)log i(R). This

fact is also used in Section 9.
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7. The Search Step.

This section gives the data structures and details of the Sort and Search Steps.

At the start of the match routine, the old blossom tree To is ordered so every major child is

a rightmost child. The vertices of G. which are the leaves of To, are numbered from 1 to n in

left-to-right order. In the following discussion we identify each vertex with its number. Each node

B of To stores lo(B), its lowest-numbered leaf descendant. The given graph G is represented by

adjacency lists, two lists for each vertex v. One list for v contains the edges {vwlw < vj, ordered

by decreasing w. The other list contains the edges {vwlw > v), ordered by increasing w.

This data structure is constructed (once in each sz.,,.e) in time 0(m) using a bucket sort.

The main property of the vertex order is that in any execution of path(R), the vertices of an

undissolved shell (even or odd) [C, D) constitute the interval [lo(C)..lo(D)). Hence for any vertex

v in an undissolved shell [C,D), the edges incident to v in G(C,D) can be found by scanning the

appropriat,, part of v's two adjacency lists (assuniig the values lo(C), lo(D) are known). The time

is 0(1) plus time proportional to the number of edges found in G(C, D).

Now consider an execution of path(R). As in the previous section, it is convenient to let

n = i(R) and m = it(R). The undissolved blossoms of P(R) are stored in a doubly-linked list U;

the order of blossoms in U is the same as in P(R).

The Sort Step can be done in 0(n) time using a bucket sort.

Now consider the Search Step. First observe the disjointness property: In one Search Step, a

given vertex is involved in at most one execution of shelLsearch, and a given edge is examined in

at most one execution of shell-search. This follows from the statement of the Search Step and the

halting criterion.

Consider the time in the Search Step for dissolving shell boundaries. (This is relevant only in

phases 2 and 3). Suppose shell G(C,D) is being searched and C dissolves (D dissolving is similar).

Let B be the blossom preceding C in list U, i.e., the smallest undissolved blossom containing C.

C is deleted from U. The edges in the new shell G(B, D) are found by ., ning the adjacency

lists of the new vertices (the interval for the new shell is [lo(B),Io(D))). The disjointness property

implies that the total time for scanning edges in dissolve steps in one Search Step is 0(m). (Some

additional processing done when a blossom dissolves, concerning dual values, is discussed below.)

Next consider the time in the Search Step associated with the priority queue used find the

next dual adjustment quantity 6 (as described in Section 1.1). We consider phases 1,3 and 2 in

that order.
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In phase 1 the priority queue is not needed, since only one dual adjustment is made. Blossom

steps are implemented in linear time using the incremental tree set-merging algorithm of [GT85].

This makes the time for one Search Step in phase I 0(m).

The total time for phase 3 is O(mlogn). This can be achieved by implementing the priority

queue as a balanced tree [GMG]. [GGS] gives an even better bound, but this is not needed here.

For phase 2, Corollary 6.3 shows that the total dual adjustment is at most 5Ck'gn. ]c1CflZ

the minimum computations for dual adjustments can be done using a queue of 5n entries, plus

log n lists of entries for future queues. All shells share the same queue, to avoid reinitialization.

This makes the total overhead for the queue in all phase 2 searches O(n log n) (by the disjointness

property). (See [GT871 for a more detailed discussion of the implementation of such a queue.) To

implement expand steps the list-splitting algorithm of [G85b] is used. This makes the time for one

Search Step in phase 2 O(mc(m, n)) (by the disjointness property).

The last aspect of the Search Step discussed here is maintaining the duals y, z. Most details

are the same as in an efficient implementation of Edmonds' algorithm (see [GMG, GGS]; although

the main concern of these papers is implementing the priority queue discussed above, the details

needed here are also given). The main technique is using offsets to facilitate the adjustment of dual

values. We also use offsets in connection with old blossoms and their translations. We show how

the algorithm translates a blossom in 0(1) time, and also how it calculates -yz(e) in 0(1) time.

These two, plus the details in [GMG, GGS], give the desired time bound for our algorithm. Recall

the interval notation introduced in Section 4, e.g., [G',B] = {A I A is an ancestor of B in To), and

z[G*, B] denotes z([G*, B]).

We start by describing the data structure. The algorithm stores two values for each old blossom

B, zi(B) and t(B). During the computation z, keeps track of sums of zo values and t keeps track

of total amounts of translations; initially zl(B) = zo[G*,BI and t(B) = 0. At any time the true

value of y(v) differs from the value that the algorithm stores (in an array) as y(v); call the latter

y'(v). The algorithm maintains these two invariants:

y(v) = y'(v) - t({A I A an undissolved ancestor of v in To)),

z[G, B] = zi(B) - 2t({A I A an undissolved ancestor of B in To)).

Consider a search of shell G(C,D). To calculate Y-Z(e), write -" (e) = Y(e) - z[G', C] -

z{B I B is a current blossom containing v). The last term is calculated as in Edmonds' algorithm,

so we concentrate on y(e) - z[G', C]. This equals y'(e) - zi(C). Hence -' (e) can be calculated in

time 0(1) as claimed.
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Next suppose the shelLsearch does a dual adjustment of 6. This necessitates translating blos-

soms C and D by 6. The algorithm does this by decreasing each of z(C) and z(D) by 2 and

increasing t(C) and t(D) by 6. This has the same effect as a translation, and maintains the above

two invariants. Hence the dual adjustment is done correctly in time 0(1).

Next suppose that blossom C or D dissolves in the shell-search. We first describe the case

of C dissolving. Let B be the smallest undissolved blossom containing C. The algorithm assigns

zl(B) - zl(C), t(B) - zkC), ana for each vertex v E B - C, y'.v) .- y'(v) + i(C) - ,(B). Since

C has dissolved, z[G", C] = z(G,B]. Thus it is easy to see the invariants are maintained. The

disjointness property implies that in one Search Step the total time spent reassigning y' values is

0(n). The rest of the time is 0(1) per dissolve step, as desired. The case of D dissolving is similar,

but only y' values get changed.

A degenerate case of this is the end of the scale, when G' dissolves by becoming current. At

that time the true y values are computed from y' and t, as above (there is no B blossom).

8. The Augment Step.

This section shows that the Augment Step can be done in linear time. This amounts to solving

the following problem in linear time: Given an arbitrary graph with a matching M, find a maximal

set "P of vertex-disjoint augmenting paths. We present an algorithm based on depth-first search

and the properties of blossoms [E65a].

The algorithm grows a search graph S. The structure of S is the similar to Edmonds' weighted

matching algorithm (Section 1.1) except for three changes: First, the requirement that an edge of

S be tight is dropped (there are no edge costs). Second, every inner blossom is a vertex, not a

nonleaf blossom. (This comes about because the routine starts with a graph that has no blossoms.

As a consequence the algorithm has no expand steps - only grow and blossom steps.) Third, the

free vertices are added to S one at a time. A free vertex v is either outer (if some search starts

from v) or inner (if a search ends by finding an augmenting path to v). The contracted subgraph

F (of Section 1.1) is always a forest: an augmenting path corresponds to a path in S joining an

outer free vertex to an inner free vertex.

The final difference in S from Edmonds' algorithm is that the search is done depth-first.

Recall that in an ordinary depth-first search of a directed or undirected graph, the search path

leading to the vertex currently being scanned contains all vertices that have not been completely
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scanned [AHU]. Our depth-first search has this property (property (vi) below) which is crucial to

its efficiency.

Recall that each outer vertex z of S has an even length alternating path from z to a free vertex;

we denote this path P(x). We now describe the data structure that specifies these paths. hi this

discussion interpret a path P as an ordered list of vertices. For example the first vertex of P(z) is

x. Let Pr denote the reverse path of P; if Q is also a path let P, Q denote the concatenation of

the two paths. (For this to be a path the last vertex of P must be adjacent to the first vertex of

Q.) For vertex Y E P(z), let P(x,y) denote the subpath of P(x) from x to y.

Let F be the set of free vertices of M. For a vertex y V F, y' denotes the vertex matched

to Y (in M). Each outer vertex z has a label I(z) that defines path P(x), as follows ([G76]). A

label is either a singleton label I(z) = y, where i is an outer vertex, or a pair label t(z) = (y, z),

where y and z are outer vertices and the pair is ordered. If x has a singleton label I(X) = y then

P(z) = z,z',P(ly). (A degenerate case is a free vertex x, which has t(z) = 0 and P(x) = X.) If X

has a pair label I(x) = (y,z) then x E P(y) and P(z) = P(y,z)'P(z).

The algorithm uses one other data structure to represent the blossom structure: For each outer

vertex z, b(z) denotes the base of the root blossom containing z.

The algorithm consists of a main routine find.ap..set and a recursive procedure find.ap.

find-ap-set initializes the search graph S to empty and each b(v) to v. Then it examines each

vertex z E F in turn. If z is not in a path of P when it is examined, the routine adds z to

S (by assigning t(x) - 0) and calls the recursive procedure find.ap(z), stated in pseudo-Algol

below. Procedure find-ap either ends normally or gets terminated before normal completion, by a

recursive call. (The latter occurs when a recursive call discovers an augmenting path.) A vertex z

is designated scanned if the invocation find-ap(z) has ended normally.

procedure find.ap(z) {z is an outer vertex)

for each edge zy V M do {examine an edge}

if y V V(S) then

if y is free then begin {an augmenting path has been found)

add xy to S, and add path yP(x) to P

terminate all active recursive calls to find.ap

end

else begin {grow steps)

add zy,jiy' to S, by setting t(y) 4- x
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f ind-ap(y')

end

else if y is a scanned outer vertex and b(y) $ b(z) then begin {blossom step}

let ui, i = 1,... ,k be the inner vertices in P(y, b(x)), ordered so that uj precedes uI.-1

for i --- 1 to k do begin {update S}

A0- (,X)

for each vertex v with b(v) E {u,u } do b(v) --- b(z)

end

for i -- 1 to k do find.ap(uj)

end |

Figure 8.1 shows the search graph constructed by find.ap(1). Vertices are labelled in the order

they become outer.

Now we show that the algorithm is correct and find-apset halts with a maximal set of aug-

menting paths. In the discussion it is convenient to let f denote the free vertex that is the current

root of Y.

The above algorithm uses several high-level concepts, for clarity and flexibility for a detailed

implementation. We now give the low-level definitions of these concepts needed to prove correctness.

Call vertex z "outer" if it has received a label 1(z). Call z "inner" if it is not outer but its mate x'

is. The search graph S contains all outer and inner vertices (we need not specify E(S) to implement

the algorithm). Note that the proof of correctness below shows that the terms "outer", "inner"

and S correspond exactly to their definitions in Edmonds' algorithm.

We adopt one more convention, to ensure that the algorithm is well-defined: In the first line

of the blossom step, it is conceivable that P(y,b(z)) is undefined because b(x) 0 P(y). In this case

interpret P(y. b(z)) as P(y); also in updating S, assign b(v) - f. (Property (vii) below shows that

this case never occurs.)

It is convenient to refer to the recursion forest R for find.ap. More precisely R is a forest whose

roots are the free vertices g such that find.ap.set calls find.ap(g). In addition if find.ap(z) calls

find.ap(y) then z is the parent of y. Figure 8.2 shows the recursion tree for Figure 8.1.

An important aspect of correctness is that the augmenting paths found by the algorithm are

simple. (It is well-known that augmenting a matching along a nonsimple augmenting path can

give a set that is not a matching.) This amounts to showing that any path P(z) is simple. We

accomplish this only at the end of the development (Lemma 8.1). For convenience define a walk [H]
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to be path that need not be simple. Terms defined for paths have the obvious meaning for walks.

The proof of correctness begins with eight basic properties of find-ap, labelled (i) - (viii).

Each property has a simple proof, usually by induction on the number of steps of the algorithm.

We omit most of the details of the proofs which are straightforward, but give the most important

points. (Further details can be found in [G76]; our algorithm is essentially a special case of [G76,

using a depth-first rule for edge selection).

(i) For any outer vertex z, P(x) is an even length alternating walk from z to f.

This is immediate, except for the fact that P(z) is even when z has a pair label. The latter

follows from the observation that in any path P(z), an inner vertex is an odd distance from f; this

observation, in turn, follows by an easy induction.

(ii) If z is a proper ancestor of z in R then P(z) = P(z, z_)P(z), for z- the vertex preceding

z in P(z).

(iii) For any outer vertex x, if u is an inner vertex in P(z) then u' is an ancestor of z in R.

Note that (ii) - (iii) combine to show that if u is an inner vertex in P(x) with u' z then

P(z) = P(x,u )P(u'). We shall use this combination of (ii) - (iii) several times.

(iv) At any time b(z) is the first vertex in P(z) with b(x)' inner.

To make property (iv) true interpret f' as an inner vertex. Note that b(x) changes as the

algorithm progresses. The proof uses (ii) - (iii), and also our convention for blossom steps when

b(z) I P(y).

(v) For any outer vertex x, every vertex v E P(x,b(z)) has b(v) = b(x).

This proof uses (ii) - (iii).

For the next property say that findoap "examines an edge" each time control passes to the line

so-labelled (i.e., the first line). This includes the last time, when no more edges zy exist.

(vi) Each time find.ap(x) examines an edge, every unscanned outer vertex is in P(x) U P.

This property follows from the order in which a blossom step calls find..ap(uj).

(vii) In a blossom step, b(x) E P(y).

The argument refers to two times in the algorithm: let t, be the time when immediately after

find.ap(y) has processed edge xy; let t be the time when find.ap(x) does a blossom step for zy.

For emphasis we write b.(z) to denote the value of b(z) at time t.. Thus property (vii) refers to

b.(z). We will show that bx(x) is an unscanned outer vertex at time t.. This gives the desired

conclusion b,(z) E P(y), by property (vi) applied to find.ap(y).

At time t., z and z' are in S. Let z be z if z is outer at time i., else z'. Note that b.(z) = b.(x).

Since b,(z) E P(z), b.(z) is in S at time t,. By (iv), b(,(x)' is inner at time t=, hence it is inner at
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time t. By (iii) b,(x) is an ancestor of x. Since z is unscanned at t., b,(z) is an unscanned outer

vertex at t, as desired.

(viii) For any edge zy with z and y scanned, b(y) = b(z).

Let z be scanned after y. We can assume that b(z) # b(y) when find.ap(z) examines edge

xy. Hence a blossom step is executed for zy. It sets b(y) to b(z) if k > 1 (see find-ap). The latter

follows from b(z) $ b(y) and property (vii).

Now we can show that find.ap-set operates as desired.

Lemma 8.1. When find.ap.set halts 7 is a maximal set of vertex-disjoint augmenting paths.

Proof. To show that each path of P is augmenting we need only show that each path P(z) is

simple. This is done by induction. In the inductive step the case that x has a singleton label is

clear. So consider a vertex ui that has a pair label (y,z). Suppose P(ui) contains a vertex t more

than once. By induction v occurs in both paths P(y,ui) and P(z). We show this cannot be, by

showing v f P(z,b(x)) and v f P(b(z)). Since b(v) = u' for some j >_ i, v P(x,b(x)), by (v).

Since P(fy) is simple, v V P(b(x)). (P(y) contains P(b(x) by property (vii) and properties (ii) -

(iv) combined.) Thus P(ui) is simple, as desired.

It is clear that the paths of P are disjoint. Now we show that when findap.set halts, P is

maximal, i.e., any augmenting path contains a vertex of P.

When find-ap-set halts, consider an alternating path with vertices zi, i = 0,...,k, that is

vertex-disjoint from P and starts at a free vertex zo. (Note that the vertices zi need not all he in

the same search tree of find-ap.) Observe that when find-ap-set halts every outer vertex z P has

been scanned, by (vi). Hence any edge z y with y 7 has y matched and either inner or outer;

in the latter case b(z) = b(y), by (iii). Now we show by induction that every z 23 is outer and

b(z2J) = zh for some h < 2j. (Note that this implies the alternating path is not augmenting, as

desired.)

The base case j = 0 is obvious. For the inductive step assume that X2j is outer. If X2j+l is

inner then it is matched (recall an outer vertex is not adjacent to a free vertex); further X2j+2 is

outer, and b(z2j+2 ) = z2,+2 by (iv). If Z2j+l is outer then b( 23) = b(z 2j+l) 0 X2j+l. Thus x2,+2

is outer and b(Z2j+1) = b(z2+2). This completes the induction. I

The time for find..ap-set is 0(m). To show this first note that the values of b can be updated

and accessed in total time 0(m), using the incremental tree set-merging algorithm of [GT85]. Next

note that in a blossom step the vertices u, are found using this observation: the vertices u' are
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the predecessors of b(z) in the sequence (blyb(i), j = 0.... (this follows from properties (iv) and

(vii)). This implies that in all blossom steps the total time to find all vertices u, is O(n). It is

obvious that the rest of the time for find..ap.set is O(m).

After find-ap-set the Augment Step augments along each path of P. This takes total time

O(n). To show this note that it is easy to give a recursive routine that finds the edges in a path

P(x), in time proportional to their number; after finding an augmenting path it can be augmented.

Alternatively [G761 gives a one-pass procedure.

9. Analysis completed: size of numbers.

This section completes the efficiency analysis. We have implicitly assumed that all arithmetic

operations use time 0(l). We now justify this assumption. We show that all numerical values

calculated by the algorithm have magnitude 0(n2 Nlog(nN)). Since the input values require a

word size of at least max{ log N, log n} bits this implies that at worst quadruple-word integers are

needed. Thus an arithmetic operation uses 0(i) time.

Lemma 9.1. At any time in the scaling routine a y or z value is 0(n 2 Nlog(nN)).

Proof. The result is proved in three steps. First we prove it for yi values. Define N, as the largest

magnitude of a cost in scale s; it is easy to see N, < 2"+1 - 2. Let Y, denote the largest magnitude

of a y value in scale s > 1, and set YO = 0. It suffices to show the recurrence

Y, < 21,.- + 1 + 5nlogn + 2nN,.

This implies Y, <5 (2' - 1)(1 + 5nlogn) + ns2 + 2 . Hence in the last scale Y. = O(n 2 Nlog(nN)).

This implies the desired bound for y.

To prove the recurrence begin by observing that the match routine never increases a I value:

y values change only in dual adjustments or translations, and if a dual adjustment increases y(v)

by b the accompanying translation decreases y(v) by 6. Hence it suffices to examine the y values

at the end of the scale.

Let w be the vertex that is free at the end of the scale. We show that at the end of the scale

s,(w) > yo(w) - 5nlogn.

In shell-search(C,D), the value y(w) does not change if w E V(C) - V(D), and it decreases by

the dual adjustment quantity b if w E V(D). Thus the total decrease in y(w) is at most the total
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dual adjustment ir all shell-searches of even shells. As noted after Corollary 6.3, this total is at

most (5/2)i(R)logi(R). Summing over all major path roots R containing w gives a geometric

progression with ratio 1/2. Thus the total decrease is at most 5nlogn as desired.

Now consider any vertex z, with matching M. at the end of the scale. As in Lemma 2.1,

c(M.) < 2[n/2J + y(V(G))- y(x)- [/2Jz(V(T)), and c(M.) _ y(V(G))- y(z)- ['/2Jz(V(T)).

Thus any vertex x has y(x) 2! y(w) - 2Ln/2J + c(M,) - c(M,). Since c(M.) E [-nN,/2..nN,/2],

we deduce

y(x) > y(w) - 2nN,.

Combining this with the above inequality for y(w) shows that any vertex x has y(x) yo( d) -

5nlogn - 2nN,. The Double Step shows that in scale s, yo(w) has magnitude at most 2 ',-] + 1.

Together these imply the desired recurrence for Y,.

It remains to analyze the magnitude of z values. Consider first the value z(G'). This value is

nonpositive - it can decrease in Double Steps and shell-searches, but it never increases. In some

scale s, let e be a matched edge in the last blossom step (this step forms the blossom G" and ends

tiLe scale). Since G' is the only blossom containing e, (la) implies that z(G*) >_ y(e) - N. Thus

z(G") satishies the lemma.

Finally consider any z for nonroot blossoms. These values are nonnegative. Consider a nonroot

blossom B. It contains a matched edge e. (1b) for e implies that in scale s, z(B) :_ z({C I e C

C)) - z(G ° ) < y(e) + N, + 2 - z(G°). Thus z(B) satisfies the lemma. I

All other quantities computed in the algorithm are easily related to y and z. For instance the

quantities of Section 7, z1, t and y', are all easily expressed in terms of z[G', L. The last paragraph

of the proof shows the latter satisfies the bound of the lemma.

This completes the analysis of the scaling routine.

Theorem 9.1. The minimum critical matching problem can be solved in

O(Vna(mn)logn mlog(nN)) time and 0(m) space. I

It is interesting that the proofs of the above lemma and Lemma 2.1 use the dual objective

function y(V(G)) - [i/2Jz(V(T)). (This is the objective function of the linear programming dual

of the matching problem [E65b].) It is tempting to analyze the matching algorithm using this dual

objective function (as done in [G85b]). Here are several easily proved facts: The dual objective

does not decrease in path. In the entire execution of path the dual objective can increase only by
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0(n) (by the Double Step). A dual adjustment of 6 in the search of a shell containing at least three

free vertices increases the dual objective by at least 6. These facts give a good bound on the time

spent in shelLsearches of shells with at least three free vertices. Unfortunately an even shell can

contain only two free vertices. Such shells do not seem amenable to an easy analysis. Hence the

attractiveness of this approach remains unclear.

10. Other matching problems.

This section gives applications of the minimum critical matching algorithm.

Theorem 10.1. A minimum perfect matching can be found in O(,/na(mn)logn mlog(nN))

time and 0(m) space. The same bounds apply to minimum cost matching and minimum cost

maximum cardinality matching.

Proof. The application to minimum perfect matching has already been noted. For minimum

cost matching, observe that a minimum cost matching on G corresponds to a minimum perfect

matching on the graph formed by taking two copies of G and joining copies of the same vertex by a

cost zero edge e. Minimum cost maximum cardinality matching uses the same construction, except

the above edges e have cost nN. I

As observed in [G85b], scaling algorithms can be used as approximation algorithms when

input numbers are real, rational or very large integers. We illustrate this with the problem of

finding an approximately optimum cost perfect matching; b_ re "optimum" is either "maximum"

or "minimum". Assume the given cost function c is nonnegative real-valued. We will modify c to

a cost function c' which takes on relatively small integral values. We will show that if M (,A') is

an optimum perfect matching for c (c'), then c(M') is close to c(M).

First consider approximately maximum perfect matching. Fix an integer a. We will define c'

to take values in [O..n'""] and achieve c(M) 2 (1 - n-)c(M). Specifically let A be the largest

given cost; assume N > 0 else the problem is trivial. Define c' = [n'+ 0c/NJ. Then c'(M') 2! c'(M)

implies nl+oc(M')/N + n/2 > nl+c(M)/N. Since c(M) ?! N, c(M') > c(M) - N,/n* > (1 -

n - )c(A ), as desired.

Next consider approximately minimum perfect matching. Fix an integer a. We will define c'

to take values in [0..n+ ] and achieve c(M') < (1 + n-)c(M). Let B be the cost of a minimum

bottleneck matching, that is, the minimum value such that there is a perfect matching A on the
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edges costing at most B. Assume B > 0 else the problem is trivial. Delete all edges costing

more than c(A); clearly such edges are not in a minimum cost matching. Define c' = [nl+ac/Bj

Note that if e is an edge that is not deleted. then c(e) <_ nB/2, whence c'(e) - n2+a as desired.

Furthermort, c'(M') < c'(M) implies nl+ac(M')/B < n+'c(M)/B + n/2. Since c(M) > B,

c(M') < c(M) + B/na < (1 + n-*)c(M), as desired.

Theorem 10.2. Given arbitrary nonnegative edge costs and a positive integer a, a perfect

matching costing at most (I + n - ') times minimum (or at least (1 - n-a) times maximum) can be

found in O(a v/n(m, n)logn m log n) time and 0(m) space.

Proof. For approximately maximum matching we need only compute c' and use the scaling

algorithm for maximum perfect matching. Th? scaling algorithm runs in the time of the theorem.

as desired.

Approximately minimum matching is similar, except we begin by finding a bottleneck match-

ing. A minimum bottleneck matching can be found in O(v"-nlognm) time [GT88], less than the

bound of the theorem. I

This leads to an efficient implementation of Christofides' approximation algorithm for a trav-

elling salesman tour. Recall tids approximation algorithm works as follows. Given are n cities and

the distance between every pair of cities. We assume that the distances satisfy the triangle inequaJ-

ity. The algorithm constructs a tour by finding a minimum spanning tree 2 , finding a minimum

perfect matching M on the odd-degree vertices of T, and reducing the Eulerian graph T U M to a

tour.

Recall the accuracy analysis of this algorithm: Let H denote a minimum length tour of the

given cities. Let c(e) denote the length of an edge joining two cities. The approximation algorithm

gives a touir of length at most c(T) + c(M). It is easy to see that c(T) < (1 - 1/n)c(H) and

2c(M) _< c(H). This implies c(T) + c(M) _ (3/2)c(Jf). Hence the algorithm gives a tour at most

3/2 times optimum.

The running time of this algorithm is O(n 3 ), the time to find the matching. We improve this by

making one change: Instead of M use a perfect matching that is at most (1 + l/n) times minimum.

It is easy to see that the resulting tour is at most 3/2 - 1/(2n) _< 3/2 times optimum. We find the

approximately minimum matching using the algorithm of Theorem 10.2.
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Theorem 10.3. Christofides' approximation algorithm for a travelling salesman tour on n cities,

where distances obey the triangle inequality, can be implemented in O(n2'S( log n) s) time and

0(n 2) space. I

A number of applications of matching require not just an optimum matching but the output

of Edmonds' algorithm, an optimum structured matching (recall the definition from Section 1.1).

One example is updating a weighted matching: Suppose we have an optimum structured matching

and the graph changes at one vertex v (i.e., edges incident to v are added or deleted, costs of edges

incident to v change). Then a new optimum structured matching can be found in the time for one

search of Edmonds' algorithm [BD, CM, G85b, W]. Another example is the single source shortest

path problem on undirected graphs with no negative cycles IL, pp. 220-222]. We now give an

algorithm to find an optimum structured matching.

The algorithm starts by executing the scaling routine, with one change: The new cost function

Z is (2n + 2)c (in Section 2, F = (n + 1)c). Change the number of scales correspondingly to

k = [log(n + 1)NJ + 2. Suppose the scaling routine halts with matching M,, blossom tree T and

dual functions yo,zo. Our structured matching has the same matching and blossom tree. The dual

function y is defined by
Y = yo(V(G)) - [ii/2Jzo(V(T));

Y/ - Y
Y= L2n+ 2J-

To define z, for each blossom B choose (arbitrarily) a blossom edge eB of B. For a blossom B with

parent A,
z(B) = (y - c)(es) - (Y - c)(EA);

z(G*) = (y - c)(eG-).

To prove the algorithm is correct, define dual functions g = (2n+2)y, T = (2n+2)z. It suffices

to show that changing the duals to ,T gives an optimum structured matching for the cost function

used by the scaling routine, F. This amounts to showing the following: (i) the duals are tight on

every blossom edge; (ii) the duals are dominated on every edge; (iii) 1(B) >_ 0 unless B = G*. We

will use the fact that all values of ,T and ? are multiples of 2n + 2.

Observe that for any vertex v,

(v) - 0(v) + Y E (-n..O).

For by definition, V(v) = (2n + 2)1 J. The quantity Y - yo(v) - "(M,) E (-n..0], by (Ia) -/L2n+2 J

0Ib). Since Z(M,) is a multiple of 2n + 2 the result follows.
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Now we show (i) - (ii). Evaluating the sum z[G',B] shows that any edge eB is tight, i.e.,

M B(eB) = F(eB). Since y'Z0(eB)-F(eB) E [-2..O], subtracting the equality implies (I -zo)[G*,B)+

2Y E [-2n..0]. Thus for any edge e,

- 0)e - - zo)[G', B] E [-2n + 2..2n].

For (i), consider any blossom edge e of B. Since Y-OZO(e) - E(e) E [-2..0], the above relation for

e shows Y(e) - Z(e) E [-2n..2n]. Since the left-hand side is divisible by 2n + 2, it epials zero, i.e.,

the duals are tight on e. For (ii), similarly consider an edge e such that B is the smallest blossom

containing it. Since Y"j0(e) < E(e), it is easy to see that y z(e) - Z(e) < 2n. Since the left-hand

side is divisible by 2n + 2, the duals are dominated on e.

Lastly consider (iii). Since (yo - Z)eB - (YO - F)eA - zo(B) E [-2..2], the definition of

implies that (2- zo)(B) E [-2n..2n]. Thus zo(B) > 0 and T(B) divisible by 2n + 2 give the desired

conclusion.

Theorem 10.4. An optimum structured matching can be found in the bounds of Theorem 9.1.|

The minimum critical matching algorithm can be modified to find a maximum cardinality

matching on an arbitrary graph G. The cardinality matching algorithm works as follows. The

scaling routine is executed with all costs equal to zero, i.e., the match routine is called only once.

Define p, the number of phase 1 iterations of path, to be rv-l1. The remaining details of phase

1 are unchanged. After phase 1 the algorithm is simpler than before. Instead of phases 2-3 it

abandons the costs and dual variables and does the following: It repeatedly calls find-ap-set to find

a maximal set of augmenting paths P; it augments along these paths. find-ap.set operates on the

graph G, unmodified. The algorithm halts when find-ap..set does not find an augmenting path.

The analysis of this algorithm is a special case of critical matching. We sketch it for complete-

ness. First recall that the old blossom tree T has root G* with children V(G). The following version

of Lemma 6.1 holds: At any time in the execution of path(G'), let M be the current matching.

Let M0 be a maximum cardinality matching whose free vertices are all free in M. Let F, be the

set of vertices that are free in M but not M0 .

Lemma 10.1. In phase 1 of the cardinality matching algorithm, at any time in path(G*),

, < n.

Proof. The proof is a special case of Lemma 6.1. As in Lemma 6.1 define u(B) = IMo nG(B)j -
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IM n G(B)I. For the current duals y,z, adding (la) for M0 and subtracting (1b) for M gives

y(F,) - pz({G*) U V(T)) < 21Mj.

Note that y io .o f, any fr: -.'ertax and iA is n,,npositive for a current blossom (as in Lemma 6.1)

Hence -pz({G")) _5 21Mj. Now the relations z(G') = -23(G*), p(G*) = IF,1/2, and [MI _< n/2

imply the lemwia. 3

At the end of phase 1, any free vertex v has (v,CG) = p. Thus IF, Ip n. This implies phase

1 ends with O(V ) more free vertices than a maximum cardinality matching. Thus find-ap-set is

executed 0(vf') times.

As before the time for a phase 1 iteration and the time for one execution of find.ap-set are

both O(m). Thus the total time is 0(vf/ m).

Theorem 10.5. A maximum cardinality matching can be found in O(V/' m) time and O(m)

space. I

This bound is the same as that of Micali and Vazirani [MV]. Note that our algorithm is not

the same as theirs: For instance it operates with inner blossoms effectively "shrunk" in phase 1.

Also our depth-first search may involve less overhead than the "double depth-first search" of [MV].

Finally note that in practice a different organization after phase 1 is probably faster: The

algorithm calls find..ap(z) for each free vertex z. If the latter does not find an augmenting path

then the vertices it scanned are still marked "scanned" in subsequent searches. This works correctly

because these vertices cannot be in augmenting paths (see [G76]).

11. Concluding remarks.

The matching algorithm generalizes to degree-constrained subgraphs. Consider a graph having

two functions 1,u : V --+ Z. A degree-constrained subgraph (DCS) is a subgraph where each vertex

v has degree in the range [t(v)..u(v)]. In a perfect DCS each degree is exactly u(v). The size of a

perfect DCS is denoted U = u(V). The weighted degree-constrained subgraph problem is to find a

minimum cost maximum cardinality DCS or a minimum cost DCS. A degree-constrained subgraph

problem on a graph of n vertices and m edges can be reduced in linear time to a matching problem

on a graph of O(m) vertices and edges [G87]. Thus our algorithm immediately implies a bound of
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O(V~ma(m,m)logm mlog(mN)) to solve the weighted DCS problem. The same bound applies
to the problem of finding a minimum cost flow on a 0-1 bidirected network [L]. A more careful

implementation of our ideas gives a bound of O(V/Ua(mn)logU mlog(nN)) for the weighted

DCS problem; this bound holds for multigraphs as well. Details will be given in a forthcoming

paper.

Pravin Vaidya has recently investigated the matching problem for poinLs .,. the plane. If
distance is measured by the L1 , L 2 or Lo, norm, a minimum perfect matching on (the underlying

complete graph of) a set of 2n points can be found in time n2.s log'(I)n and space O(n logn) (V].
Furthermore it appears that applying our algorithm reduces the time by a factor of about f [V].

Figure Captions

Figure 1.1. Blossom with base vertex z.

Figure 1.2. Blossom tree.

Figure 1.3. Search graph in Edmonds' algorithm.

Figure 1.4. Grow steps in Edmonds' algorithm.

Figure 1.5. Expand step.

Figure 3.1. Major path with dissolved blossoms.

Figure 8.1. Search graph in the Augment Step.

Figure 8.2. Recursion tree for find.ap.
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